top of page

Dynamics of cell-extracellular matrix interactions during fibrosis

image - top.jpg

Bleomycin-induced fibrotic lung tissue from mouse, stained for cells and collagenous matrix.

Fibrosis is a central component of numerous diseases, including liver cirrhosis, idiopathic pulmonary fibrosis, post-infarct cardiac scarring, and cancer; as such, it is implicated in an estimated 45% of all deaths in the developed world.  These diverse pathologies similarly progress toward organ failure through myofibroblast-mediated overproduction of an excessively stiff ECM.  These myofibroblasts are the very same cells that are critical to wound healing and regeneration.  What differentiates wound healing from fibrosis? What feedback signals from the microenvironment diverts a healing response toward fibrosis? Answering these questions requires a fundamental understanding of how cells sense and mechanically respond to their extracellular environs, and how this response mediates changes in ECM structure and mechanics that feedback to further propagate fibrosis.  We develop approaches that allow us to study the evolving structure and mechanical properties of fibrous ECM, while monitoring the cellular forces that drive myofibroblast signaling.  This work will shine light on biophysical mechanisms common to fibrotic changes accompanying numerous diseases, and could lead to therapies that promote regenerative healing over fibrotic scar formation.

fibrosis - bottom.jpg

We use synthetic biomaterials to build 3D models of fibrotic interstitial tissues.

Relevant publications:
Fiber density modulates cell spreading in 3D interstitial matrix mimetics
Matera DL, Wang WY, Smith MR, Shikanov A, Baker BM.
ACS Biomaterials Science & Engineering, 2019. 10.1021/acsbiomaterials.9b00141

Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation
Davidson MD, Song KH, Lee MH, Llewellyn J, Du Y, Baker BM, Wells RG, Burdick JA.
ACS Biomaterials Science & Engineering, 2019.  10.1021/acsbiomaterials.8b01276

Therapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis
Toyama T, Looney AP, Baker BM, Stawski L, Haines P, Simms R, Szymaniak AD, Varelas X, Trojanowska M.
Journal of Investigative Dermatology, 2018, 138(1):78-88. 

bottom of page