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Tissue engineering with meniscus cells derived from surgical debris

B. M. Baker B.S.11, A. S. Nathan{i, G. Russell Huffman M.D., M.P.H.{ and R. L. Mauck Ph.D.}{1*
T McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery,
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1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States

Summary

Objective: Injuries to the avascular regions of the meniscus fail to heal and so are treated by resection of the damaged tissue. This alleviates
symptoms but fails to restore normal load transmission in the knee. Tissue engineering functional meniscus constructs for re-implantation may
improve tissue repair. While numerous studies have developed scaffolds for meniscus repair, the most appropriate autologous cell source
remains to be determined. In this study, we hypothesized that the debris generated from common meniscectomy procedures would possess
cells with potential for forming replacement tissue. We also hypothesized that donor age and the disease status would influence the ability of
derived cells to generate functional, fibrocartilaginous matrix.

Methods: Meniscus derived cells (MDCs) were isolated from waste tissue of 10 human donors (seven partial meniscectomies and three total
knee arthroplasties) ranging in age from 18 to 84 years. MDCs were expanded in monolayer culture through passage 2 and seeded onto fiber-
aligned biodegradable nanofibrous scaffolds and cultured in a chemically defined media. Mechanical properties, biochemical content, and his-
tological features were evaluated over 10 weeks of culture.

Results: Results demonstrated that cells from every donor contributed to increasing biochemical content and mechanical properties of
engineered constructs. Significant variability was observed in outcome parameters (cell infiltration, proteoglycan and collagen content, and
mechanical properties) amongst donors, but these variations did not correlate with patient age or disease condition. Strong correlations
were observed between the amount of collagen deposition within the construct and the tensile properties achieved. In scaffolds seeded
with particularly robust cells, construct tensile moduli approached maxima of ~40 MPa over the 10-week culture period.

Conclusions: This study demonstrates that cells derived from surgical debris are a potent cell source for engineered meniscus constructs.
Results further show that robust growth is possible in MDCs from middle-aged and elderly patients, highlighting the potential for therapeutic
intervention using autologous cells.

© 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction anq ::r11ggre1c4&11n6 ir;4the inner zone and type | collagen in the
eriphery)'® .

The .me1nii£sscus. is a fibrocartilaginous tissue vital to knee6 P V\?hiler}%e meniscus functions well with a lifetime of use,
function’™. Aligned collagen bundles within the meniscus traumatic or degenerative injuries to the avascular, inner
bear tensile hoop stresses that are ger;erated with load region fail to heal®®. Disruption of the fibrous architecture
transmission across the tlblofemoralgjomt . These stresses impairs load transmission®2%27 and initiates erosion of the
are resisted with little deformation® by the high tensile adjacent articular surfaces, or osteoarthritis (OA)?~3". Cur-
properties in the circumferential direction, which range rently, damage to the inner zone of the meniscus is treated
from 50 to 250 M)ﬁﬂaadependlng.on age, species, and test- by resection via arthroscopic partial meniscectomy, which
ing parameters’™". The meniscus is sparsely colonized alleviates symptoms but similarly predisposes patients to
by a heterogeneous cell population which continually main- OA. Tissue removed in this procedure is deemed surgical
tains and remodels the extracellular matrix (EQM)14'15- waste and is discarded at the time of surgery. Studies fol-
Meniscus cells transition from a fibrochondrocyte-like phe- lowing patient outcomes after partial meniscectomy indicate
notype in the avascular inner region to a more fibroblastic that resection of larger portions of meniscus results in
phen_otype ir_1.the puter rim_, with ECM deposition reflective more rapid cartilage erosion®2-33. Adverse changes in carti-
of this transition (i.e., a mix of type | and type Il collagen lage (as indicated by radiographic joint space narrowin%)
: are noted within a 5—10-year period post-meniscectomy®°.
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outcomes (reviewed in Refs. 34—36). For example, cell-free
hydrogels have been implanted in fg)lace of an entire menis-
cus in rabbit and sheep models®+*¢. A variety of degradable
porous foams have been developed®®*°, some incorporat-
ing anchors for fixation to the tibial plateau‘“, or carbon
fibers to instill directionality*®>. More recently, efforts
have focused on natural materials such as subintestinal
submucosa**** as well as collagen- and tissue- based
implants**~*°. Many of these studies employing in vivo an-
imal models reveal that some chondroprotection is afforded
by the implant, but none to date have been able to
recapitulate native mechanical oproperties or completely
abrogate cartilage degeneration®.

To advance the field of meniscus repair, we have inves-
tigated the use of nanofibrous scaffolds combined with me-
niscal cells or mesenchymal stem cells (MSCs) for
meniscus tissue engineering®'**2. This strategy is founded
on electrospinning, a scaffold fabrication technique that
generates nanometer diameter fibers through an electro-
static process®®®*. While numerous biologic and synthetic
polymers can be electrospun (see Ref. 54 for review), we
fabricate nanofibrous scaffolds using poly(e-caprolactone)
(PCL), a slowly degrading polyester. This polymer was cho-
sen as it maintains its form in a physiologic environment
and can thus direct tissue formation over a long period of-
time (as cells deposit new ECM), as well as deform elasti-
cally over physiologic ranges experienced in the
meniscus®®. These fibers can further be arranged into par-
allel arrays®'®2%%57  creating an architecturally and
mechanically anisotropic micro-pattern conducive to orga-
nized tissue growth. In a recent study, we showed that
young bovine meniscal cells aligned with and deposited
ECM in the predominant fiber direction of these anisotropic
scaffolds, and that this matrix deposition improved the con-
struct tensile properties with time in culture®®. Such con-
structs, that possess architectural and mechanical
features similar to the native tissue, may better restore me-
niscus mechanics and load transmission in vivo, averting
the onset of OA after meniscus repair.

To move this technology closer to clinical implementa-
tion, this study focused on the potential of human menis-
cus derived cells (MDCs) isolated from surgical debris
from patients undergoing either partial meniscectomy or
total knee arthroplasty (TKA). Isolation of cells from native
meniscus tissue has a number of advantages; the cells
have the appropriate phenotype, would be autologous
thus limiting immune responses, and require no secondary
surgical site. In this study, we utilized cells derived from 10
patients spanning a range of ages (18—84 years old) and
disease conditions (traumatic or degenerative meniscus
lesions, or OA of the entire joint). It has previously been
shown that increases in organism age limits the ability of
chondrocytes from articular cartilage to form functional
ECM®85° Further, when age-matched chondrocytes de-
rived for autologous chondrocyte implantation procedures
were compared between normal and osteoarthritic donors,
cells from diseased tissues showed a markedly lower
ability to form collagen-rich ECM®°. Meniscus cells are re-
lated to chondrocytes (particularly for the samples acquired
from the inner avascular region of the meniscus), and so
we hypothesized that while all surgical specimens would
yield viable human cells, their ability to deposit functional
fibrocartilaginous ECM and improve scaffold properties
would depend on the donor age and/or disease status.
To test this hypothesis, MDCs were seeded onto aligned
nanofibrous scaffolds, cultured in a chemically defined
chondrogenic medium, and biochemical, histological, and

mechanical properties were evaluated over a 10-week
time course.

Materials and methods
SCAFFOLD FABRICATION

For each donor, a separate aligned, nanofibrous mesh was produced
via electrospinning®'®2. Briefly, a 14.3% w/v solution of PCL (80 kD,
Sigma—Aldrich, St. Louis, MO) was dissolved in a 1:1 solution of tetrahydrofu-
ran and N,N-dimethylformamide (Fisher Chemical, Fairlawn, NJ). The solution
was electrospun onto a grounded mandrel (1” diameter, 8” length) rotating at
avelocity of ~ 10 m/s®". For each production run, nanofibers were collected for
8 h, resulting in a fiber mats with an average thickness of 0.865 + 0.177 mm.

CELL ISOLATION, EXPANSION, AND SEEDING

Meniscus tissue was collected according to an approved IRB protocol
from 10 adult male and female patients ranging in age from 18 to 84 years
(see Table I). Resected tissue was finely minced and plated on tissue culture
polystyrene in basal medium [Dulbecco’s modified eagle medium (DMEM)
containing 1x Penicillin/Streptomycin/Fungizone (PSF) and 10% fetal bovine
serum (FBS)]. MDCs emerged over a 2-week period after which the tissue
pieces were removed. Adherent colonies were passaged twice to obtain
>20 x 108 cells for scaffold seeding.

Mechanically homogeneous strips (5 mm wide by 75 mm long) were cut in
the prevailing fiber direction of electrospun sheets and prepared for cell-
seeding®!®2. Strips were disinfected in ethanol (100, 70, 50, 30%; 30 min/
step), rinsed twice in phosphate-buffered saline (PBS), and soaked overnight
in a 20 pg/ml human fibronectin (Invitrogen, Carlsbad, CA). Prior to seeding,
strips were rinsed twice with PBS and segmented into three 25 mm long
pieces, two of which were seeded with MDCs, leaving one to serve as
a paired, unseeded control (USC). For seeding, each scaffold side received
a 50 pl aliquot containing 250,000 cells followed by 1 h of incubation. After
the final incubation, seeded constructs were cultured in 4 ml of chemically
defined medium (high glucose DMEM with 1x PSF, 0.1 uM dexamethasone,
50 pg/ml ascorbate 2-phosphate, 40 pg/ml L-proline, 100 pg/ml sodium
pyruvate, 1x ITS+ (6.25 ug/ml insulin, 6.25 ug/ml transferrin, 6.25 ng/ml
selenous acid, 1.25 mg/ml bovine serum albumin, and 5.35 ug/ml linoleic
acid) with 10 ng/ml transforming growth factor-B3 (TGF-B3) changed twice
weekly) in non-tissue culture treated 6-well plates®'. The USCs were incu-
bated at 37°C in PBS changed twice monthly for the study duration.

MECHANICAL TESTING

Uniaxial tensile testing was performed with an Instron 5848 Microtester
(Instron, Canton, MA). Prior to testing, five thickness measurements along
the length of each sample were taken with a custom linear variable differen-
tial transformer (LVDT) measurement system; five width measurements were
acquired with a digital caliper. Samples were clamped in serrated grips and
a 0.5N preload applied for 180's to ensure proper seating. After noting
gauge length with a digital caliper, samples were preconditioned by cyclic ex-
tension to 0.5% of the gauge length 0.1 Hz for 10 cycles. Subsequently, sam-
ples were extended beyond their yield point at a rate of 0.1% of the gauge
length/s. For day 70 samples, extension was carried out until failure oc-
curred. Stiffness was determined from the linear region of the force—elonga-
tion curve. Using the cross-sectional area (CSA) and gauge length, Young’s

Table |
Characteristics of human donor tissue: age, gender, tear type, and
anatomic location. Surgical debris from a total of 10 donors ranging
in age from 18 to 84 years was used in this study. Tissue was de-
rived from seven donors who underwent partial meniscectomy and
three who underwent total knee replacement

Donor Age Sex Tear type Side Location
1 18 Male Bucket handle Medial Inner 2/3
2 25 Male Incomplete discoid Lateral Inner 1/3
3 49  Male Radial Medial Inner 2/3
4 33 Male Bucket handle Medial Inner 1/3
5 70 Male TKA Medial Total

6 39 Male Radial Medial Inner 1/3
7 81 Male Radial—horizontal  Medial Inner 2/3
8 84 Female TKA N/A Total

9 58 Male TKA Lateral Total

10 45 Female Horizontal Lateral Inner 2/3
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Fig. 1. Morphological appearance of passage 2 human MDCs in monolayer and on fiber-aligned nanofibrous scaffolds. (A) Passage 2
MDCs in monolayer on tissue culture polystyrene demonstrate a fibroblast-like morphology. (B) Passage 2 MDC-seeded constructs cultured
for 1 day reveal MDCs elongating in and aligning with the predominant fiber direction of the scaffold. Red: F-actin, white: fibers, blue: nuclei.

Scale bar: 50 um.

modulus was calculated from the analogous portion of the stress—strain
curve. Five seeded samples were tested for each of the 10 donors at each
time point along with their corresponding USCs.

BIOCHEMICAL ANALYSES

After mechanical testing, samples were stored at —80°C until determina-
tion of biochemical composition. Samples were lyophilized (Freezone 4.5
Freeze Dry System, LabConco, Kansas City, MO) for 24 h and massed
to determine dry weights (DWs). Following this, samples were papain di-
gested as in Ref. 61 and DNA, sulfated glycosaminoglycan (s-GAG), and
collagen content was determined using the Picogreen double-stranded
DNA (dsDNA) (Molecular Probes, Eugene, OR), dimethylmethylene blue
(DMMB) dye-binding®?, and hydroxyproline®® assays, respectively. Hydrox-
yproline content was converted to collagen as in Ref. 64, using a factor of
7.14. This conversion is an estimate, and susceptible to bias based on the
prevailing collagen type present. Data are reported as a sample’s total con-
tent or as a percentage of the sample DW. Five additional human meniscus

samples (donor age 62 + 6 years, all TKAs) were tested to establish native
tissue biochemical content ranges.

HISTOLOGY

Cytoskeletal organization was examined in MDC monolayers and cell-
laden constructs 1 day post-seeding. Filamentous actin and nuclei were
labeled with Alexa Flour 647 phalloidin and Prolong Gold Antifade with
4’ 6-diamidino-2-phenylindole (DAPI) (Invitrogen), respectively, and imaged
at 20x on a Nikon T30 inverted fluorescent microscope (Nikon Instruments,
Inc., Melville, NY). For analysis of matrix deposition with long-term culture,
a 6 mm length was cut from each paired, non-tested construct, fixed over-
night at 4°C in 4% phosphate-buffered paraformaldehyde, and frozen in op-
timal cutting temperature compound (Sakura Finetek USA, Inc., Torrance,
CA). Cross-sections, 8 um thick (spanning the depth and width of the scaf-
fold) were cut with a Cryostat (Microm HM500, MICROM International
GmbH, Waldorf, Germany). Sections were rehydrated and stained with
DAPI, Alcian Blue (AB, pH 1.0), or Picrosirius Red (PSR) to visualize cell

Table Il

Structural and mechanical properties of engineered meniscus constructs. CSA (mm?), stiffness (N/mm), modulus (MPa), and maximum stress

(MPa) achieved on day 70 are provided for constructs generated from each of the 10 donors. Values indicate the mean (top number in bold)

and standard deviation (bottom number) of five samples tested for each measure and donor at each time point. For each parameter, the high-

est magnitude of change is denoted with an (H), and lowest level of change is denoted with an (L). Average change in each parameter be-

tween days 14 and 70 for all donors is provided at the bottom of each column. All comparisons between days 14 and 70 were significantly
different with P < 0.05 except when noted (+)

Time in culture CSA (mm?3) Stiffness (N/mm) Modulus (MPa) Max stress (MPa)
Day 14 Day 70 Day 14 Day 70 Day 14 Day 70 Day 70
Donor (age) 1(18) 4.6 5.4+ 3.7 5.6 16.1 20.2 4.6
1.1 0.6 0.3 0.3 3.2 24 1.1
2 (25) 5.0 6.3 4.2 5.9 15.3 17.2+ 5.7
0.5 0.6 0.3 0.5 1.3 1.0 0.4
4 (33) 5.5 55+, L 4.6 9.9 15.5 325 3.1
0.9 1.1 0.5 0.9 2.0 5.2 0.6
6 (39) 4.0 4.7+ 3.5 51L 15.4 19.2 2.8
0.5 0.4 0.4 0.5 1.2 0.6 0.4
10 (45) 4.0 4.7 3.8 8.1 16.9 30.2 2.0
0.4 0.4 0.5 0.8 0.4 1.4 0.2
3 (49) 5.0 6.1 41 7.9 15.0 23.1 3.2
0.5 0.7 0.6 0.4 0.9 1.8 0.5
9 (58) 4.5 7.6 H 6.1 11.2 24.8 256+, L 5.6
0.9 0.5 1.9 1.0 41 1.1 1.5
5 (70) 4.2 5.9 4.9 10.5 21.2 315 3.1
0.4 0.5 0.3 1.7 1.9 3.4 0.5
7 (81) 3.6 5.2 2.7 7.2 13.9 239 23
0.3 0.3 0.1 0.6 0.6 1.4 0.3
8 (84) 4.3 5.5 4.2 125 H 17.6 39.2H 4.8
0.4 0.4 0.7 1.0 14 1.6 0.6
Average increase 1.2 4.2 9.1 3.7
0.8 21 6.8 1.3
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nuclei, proteoglycans, or collagen, respectively. DAPI stained sections were
imaged at 5x. On separate slides, AB and PSR images were acquired at the
same magnification on an upright Leica DMLP microscope (Leica Microsys-
tems, Germany).

STATISTICAL ANALYSES

Analysis of variance (ANOVA) was carried out with SYSTAT (v10.2, Point
Richmond, CA). Fisher’s least significant difference post hoc tests were used
to make pair-wise comparisons between donors and time points, with signif-
icance set at P < 0.05. At least five samples were analyzed for each donor at
each time point. Data are presented as the mean =+ standard deviation for
each donor. Pearson’s correlation analysis was performed with SYSTAT.

Results
CELL ISOLATION, EXPANSION, AND SCAFFOLD SEEDING

Cells were successfully isolated from meniscus tissue
from each of the 10 donors (Table I). A total of 20 x 10° pas-
sage 2 cells were required from each donor for construct
seeding. The time from initial plating togassage 2 confluency
with sufficient expansion (>20 x 10° cells) was 53 +9.6
days. Cell morphology (Fig. 1) during expansion showed
an increasing population of fibroblast-like cells. When

seeded onto aligned scaffolds, MDCs aligned their long
axes and cytoskeleton with the scaffold architecture (Fig. 1).

MECHANICAL PROPERTIES OF MDC-LADEN CONSTRUCTS

Mechanical properties of cell-seeded and paired acellular
scaffolds were assessed via tensile testing. It was noted in
preliminary studies that variations in scaffold mechanical
properties exist both between different nanofibrous PCL
batches, as well as along the length of the collection man-
drel. For example, scaffold stiffness on day 14 (before ap-
preciable matrix deposition) from different batches ranged
from 2.7 to 6.1 N/mm (Table Il). To address the issue,
each donor was assigned a specific production run of nano-
fibrous scaffold, and each MDC-seeded sample was tested
along with an USC excised from the same location along
the mandrel. As strips excised in such a manner begin
with identical mechanical properties, the effect of cell-seed-
ing and ECM deposition can be more accurately assessed.
By normalizing the stiffness of each cell-seeded scaffold to
its counterpart USC at each time point, a percentage
change (as well as a magnitude change) in stiffness can
be determined.
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Fig. 2. MDC-seeded scaffolds increase in mechanical properties with time in culture in a fibrocartilaginous medium. (A) Force—elongation plots

of five scaffolds either seeded (MDC) or maintained as USCs on day 70 for Donor 8. (B) Maximum load of seeded scaffolds normalized to that

of paired USC scaffolds on day 70 for all 10 donors. Donor # is indicated on the x-axis. Data represent the mean and standard deviation of five

samples per donor. (C) Normalized stiffness (indicating percentage change) of MDC-seeded scaffolds from each donor compared to their
paired USC scaffolds at each time point. Donor # (and age) is indicated on the x-axis.
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The mechanical response of engineered constructs dif-
fered markedly between USCs and MDC-seeded constructs
over the duration of the study. The force—displacement
curve from each of the day 70 Donor 8 samples are shown
in Fig. 2(A), with MDC-laden constructs showing a much
higher stiffness and ultimate load. Quantification of these
changes amongst all donors revealed that the ultimate
load [Fig. 2(B)] and stiffness [Fig. 2(C)] of cell-seeded sam-
ples increased for 8/10 donors and 10/10 donors by day 70,
respectively (P < 0.001 vs USC). Conversely, USCs did not
decrease over this same time course (P > 0.219 vs day 14).
The average change in stiffness between day 14 and day 70
was 4.2 + 2.1 N/mm for all donors, with a maximum change
of 8.1 N/mm for Donor 8 and a minimum change of 1.6 N/mm
for Donor 6 (Table Il). On a percentage basis, this represents
changes of up to 300% in construct stiffness compared to
USCs over the 70 days [Fig. 2(C)]. Cell-seeded constructs
from each of the donors also increased in thickness
(P < 0.05 except Donors 4 and 6), resulting in an increasing
CSA (Table ll, P < 0.05 except Donors 4 and 6). While mod-
uli generally increased, the effect of the increase in CSA oc-
casionally precluded these changes from reaching
significance (Table IlI). The average change in modulus
was 9.1 £ 6.8 MPa for all donors, with a maximum change
of 21.6 MPa for Donor 8 and a minimum change of
0.8 MPa for Donor 9.

BIOCHEMICAL CONTENT OF MDC-LADEN CONSTRUCTS

Construct biochemical content was determined for cell-
seeded scaffolds with time in culture. Constructs seeded
with MDCs from all donors increased in DW (Table I,
P < 0.05 except Donor 2). This increase in mass ranged
between 2.5mg (Donor 4) and 6.1 mg (Donor 9) and

averaged 4.5 + 1.6 mg for all donors. DNA content also in-
creased with time in culture (P < 0.001) for all donors ex-
cept for Donor 10 (Table llI). Collagen and s-GAG
contents also increased in constructs in a time-dependent
manner [Fig. 3(A and B)]. Overall, the total s-GAG and col-
lagen per construct was highly dependent on time in cul-
ture (P<0.001) and donor (P<0.001). We normalized
these results to the DW of the construct [Fig. 3(C and
D)] to enable comparisons to the native tissue. For colla-
gen, native tissue values averaged 50+ 18% DW, and
ranged from 24 to 72% DW [Fig. 3(C), gray region].
s-GAG content of native tissue averaged 0.6 + 0.3% DW,
and ranged from 0.3 to 1.1% DW [Fig. 3(D), gray region].
The most robust deposition of collagen (~18% DW, Donor
5) was lower than the lowest native tissue level, while the
largest amount of s-GAG (~3.3% DW, Donor 7) was
above native levels.

STRUCTURE—FUNCTION CORRELATIONS OF MDC-SEEDED
CONSTRUCTS

Correlation analysis was carried out to determine the struc-
ture—function relationships within developing constructs,
and the relationship between donor age and capacity to gen-
erate increasing mechanical properties [Fig. 4(A—C)]. Strong
correlations were found between the change in stiffness of
the construct with the total collagen content [Fig. 4(A),
R? = 0.81 value, P < 0.001]. Weaker (but significant) correla-
tions were also observed for change in stiffness with total
s-GAG content [Fig. 4(B), B = 0.46, P < 0.001]. While there
were significant differences in total DNA content between
donors, no significant correlation was observed between
this measure and mechanical performance (data not shown).
Finally, correlating the change in stiffness with age showed

Table Il
Biochemical composition of engineered meniscus constructs. Dry mass (mg), total DNA content (1.g), total s-GAG content (ug), and total col-
lagen content (ug) achieved on day 70 are provided for constructs generated from each of the 10 donors. Values indicate the mean (top num-
ber in bold) and standard deviation (bottom number) of five samples tested for each measure and donor at each time point. For each
parameter, the highest magnitude of change is denoted with an (H), and lowest level of change is denoted with an (L). Average change in
each parameter between days 14 and 70 for all donors is provided at the bottom of each column. All comparisons between days 14 and
70 were significantly different with P < 0.05 except when noted (+).

Time in culture Dry mass (mg)

Total DNA (ng)

Total GAG (ng) Total collagen (ng)

Day 14 Day 70 Day 14 Day 70 Day 14 Day 70 Day 14 Day 70
Donor (Age) 1(18) 15.6 19.6 4.2 9.7 36.7 190.7 89.5 1778.9
1.4 1.3 0.5 1.2 5.4 11.6 28.4 204.1
2 (25) 20.7 23.0 +, L 4.8 109 H 39.9 418.4 1171 2065.8
0.9 1.2 0.8 1.9 3.0 70.7 49.5 461.1
4 (33) 21.1 23.6 7.7 9.7 93.1 447.8 541.9 3175.9
3.8 3.6 0.5 0.8 7.0 70.3 45.5 350.3

6 (39) 13.9 17.0 3.2 5.1 36.4 1094 L 98.8 755.0 L
1.8 2.0 0.4 0.4 3.1 21.2 14.0 89.0
10 (45) 15.3 19.0 8.1 8.4+, L 122.0 212.8 665.3 2414.0
0.8 0.5 0.7 0.6 8.0 24.3 97.1 101.2
3 (49) 17.9 23.7 7.0 10.1 70.6 320.2 255.3 2336.5
3.1 25 0.9 0.5 8.0 40.6 41.4 135.6
9 (58) 20.1 272 H 11.0 13.6 132.1 8771 H 375.4 2656.3
4.0 1.7 0.7 0.8 4.7 34.6 18.1 230.3

5 (70) 16.9 22,7 12.8 15.2 160.3 500.3 746.6 4013.6 H
1.3 2.0 0.7 0.8 8.8 137.9 82.5 346.3
7 (81) 141 19.0 8.3 10.0 80.8 641.0 279.0 3006.3
1.2 1.0 0.4 0.7 6.8 158.4 30.5 339.3
8 (84) 16.3 22.0 7.4 123 93.9 455.2 267.1 3185.7
1.2 1.7 0.4 0.7 8.9 99.3 62.8 248.0

Average Increase 4.5 3.0 330.7 2195.2
1.6 1.9 208.2 749.3
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Fig. 3. Donor-to-donor variation in time-dependent changes in biochemical composition of MDC-seeded engineered meniscus constructs. (A)

Total collagen and (B) total s-GAG accumulation in engineered constructs with time in culture for each donor. Donor # (and age) is indicated

on the x-axis. Data represent the mean and standard deviation of five samples per donor per time point. (C) Percent DW (% DW) collagen and

(D) % DW s-GAG for samples from each of the 10 donors on day 70. Gray background in (C) and (D) indicates range of collagen and s-GAG

found in five native tissue samples. Note the interrupted scale in (C) the % collagen by DW plot. USC constructs processed similarly showed
no appreciable background content of s-GAG or collagen.

a weak correlation toward increasing properties with donor
age [Fig. 4(C), R? =0.47, P < 0.05].

HISTOLOGICAL ANALYSIS

Cellular infiltration and distribution of ECM were evalu-
ated through histological staining of construct cross-
sections. DAPI-staining showed the progressive infiltration
of cells into the scaffold with culture time. Cells from differ-
ent donors infiltrated to a greater or lesser degree as shown
in the best-case [Fig. 5(A), Donor 8] and worst-case
[Fig. 5(B), Donor 6] images of day 70 samples. Similarly,
collagen and s-GAG deposition varied amongst donors
and appeared to correlate with the best performing
[Fig. 5(C and E)] and worst performing [Fig. 5(D and F)]
constructs on day 70.

Discussion

In this study, we assessed the ability of human MDCs to
modulate the properties of fiber-aligned biodegradable elec-
trospun nanofibrous scaffolds. This scaffolding system
serves as a 3D micro-pattern for directing cell orientation
and neo-tissue formation by replicating the structural and me-
chanical anisotropy of the native tissue. Human MDCs were
isolated from surgical waste from 10 human donors ranging in
age from 18 to 84 and with differing disease status (acute vs

degenerative meniscus tears, or progression of knee OA ne-
cessitating total joint replacement). MDCs were successfully
isolated from each donor tissue, expanded in culture through
passage 2, seeded onto scaffolds, and cultured in a chemi-
cally defined, pro-fibrocartilaginous medium formulation for
10 weeks. When seeded with MDCs, construct tensile prop-
erties, biochemical content, and histological features im-
proved with time. Amongst the 10 donors, variations were
observed in the magnitude of these quantitative and qualita-
tive outcome measures, but each donor MDC population
yielded positive maturation of the engineered construct.
Those donors whose MDCs responded most vigorously gen-
erated well infiltrated constructs containing ~20% of the col-
lagen content of healthy native tissue with tensile moduli of
~40 MPa. These findings indicate that native human
MDCs derived from surgical debris are a potent cell source
for the fabrication of mechanically functional engineered me-
niscus constructs.

We began this work with the hypothesis that MDCs de-
rived from older individuals would harbor less capacity to
generate functional properties in vitro. This idea was predi-
cated on work demonstrating that in chondrocytes, a related
cell type, collagen production decreases with age®®®°, and
that disease states such as OA further reduce the matrix
forming capacity®. In this study, MDCs were derived from
the inner third of the meniscus (small avascular tears), the
inner two-thirds of the meniscus (large tears or degenerate
regions), or from the entirety of the meniscus (meniscus




342 B. M. Baker et al.: Tissue engineering with human meniscus cells

E 10

€ T A
E B o e
w0

o

a B et e s e S B s B i
E

i

uc', R Ry A
P ey i L LL WS
c 2

© R”=0.8095

G o

0 1 2 3 4 5
Total Collagen (mg)

Change in Stiffness (N/mm)

0 - T . T T
0 0.2 04 06 0.8 1
Total GAG (mg)
€10
E
Z 8]
w
o
2 87
E=
B 4
=
]
2 . S 2
4 * 2
E R*=0.4728
0
U T T T T
0 20 40 80 80 100

Donor Age (years)

Fig. 4. Structure—function-composition correlations for MDC-
seeded constructs with time in culture. (A) Total collagen content
in constructs correlates well with change in stiffness for all donors
at all time points (days 14, 42, and 70). (B) Total GAG content cor-
relates poorly with change in stiffness for all donors at all time
points (days 14, 42, and 70). (C) Donor age showed a weak corre-
lation with change in stiffness of constructs on day 70.

removal with TKA). These MDCs represented a range of
donor ages, spanning 18—84 years. MDCs from the inner
zone of the meniscus are considered chondrocyte-like, dis-
playing phenotypic similarities including a round cell shage
and cartilage gene expression and matrix deposition®3®,
Thus, these cells were expected to display age-dependent
declines in ECM deposition capacity. However, counter
our hypothesis, the age of donor MDCs showed no negative
correlation with the properties of the engineered construct.
In fact, in this study, change in stiffness and donor age
showed a weak positive correlation. This finding is perhaps
due to the fact that all donors were skeletally mature, while
the most marked changes in cell biosynthetic activities occur
at early ages. Interestingly, constructs with the most proteo-
glycan deposition, which one would expect for MDCs derived

from the inner zone, actually came from Donor 9, who under-
went a TKA and contributed cells from the entire meniscus.
Obviously, these findings are drawn from a small set of do-
nors, but analysis of this set reveals few strong indicators
of robust growth based on standard parameters such as
age and zonal source of donor cells.

In this study we focused on MDCs isolated from menis-
cectomy debris as a cell source for engineering replace-
ment meniscus tissue. We focus on this overlooked cell
source for a number of reasons outlined above (potential
for autologuous therapies, no immune response, proper
cell phenotype), and not on the more commonly used
MSC. MSCs can undergo a fibrocartilaginous differentiation
on nanofibrous scaffolds, as evidenced by increases in
aggrecan and type Il collagen expression and deposition®®,
and we have demonstrated similar growth and maturation
patterns when using MSCs compared to MDCs in a juvenile
bovine model system52. However, MSC isolation necessi-
tates a second surgical site not associated with primary me-
niscus repair. Furthermore, we have recently shown that all
regions of the meniscus contain multi-potential cells®”, sug-
gesting that endogenous cell populations may contribute to
repair processes. The finding that all constructs improved in
mechanical properties from 10 donors, points to the poten-
tial of MDCs as a cell source for meniscus tissue engineer-
ing. With surgery, the defect that is generated to alleviate
acute symptoms may be accurately characterized. As the
time between meniscus injury and the onset of OA is rela-
tively long (5—10 years), a fully conforming construct may
be fabricated and matured ex vivo to effect autologous
repair.

In vitro culture of meniscus implants offers a range of ben-
efits, most importantly the ability to optimize neo-tissue
growth. In this study, we used a chemically defined medium
containing TGF-B3 to promote fibrocartilaginous ECM depo-
sition. In our previous studies with MDCs in both pellet format
and when seeded onto nanofibrous scaffolds, this medium
increased proteoglycan and collagen deposition®?%”. For
a small subset of four donors, expression [assessed by
real time polymerase chain reaction (PCR)] of aggrecan
and type | collagen was constant or increased over the cul-
ture duration, while type Il collagen expression increased
markedly, perhaps reflecting the reversal of dedifferentiation
events that had occurred as result of monolayer expansion
(data not shown). For the repair of defects in the inner avas-
cular meniscus zone (the most common site of injury in
middle-aged patients), engineered constructs would ideally
match the biochemical composition of the native tissue.
This zone contains the largest level of proteoglycan, and
a mixture of type | and type Il collagens®'. For MDCs from
all donors, GAG levels matched or were superior to native
tissue. Correlations between measured GAG content and
tensile properties showed only a weak correlation. Con-
versely, collagen content of constructs formed from all
donors increased substantially, and reached a maximum of
18% DW, though a range is observed in samples derived
from differing states of meniscal degeneration. Correlation
analysis showed a very strong association between collagen
deposition in constructs and the tensile properties. This sug-
gests that maximizing the collagen content of constructs may
further improve their tensile properties.

While the results of this study are promising, there are
several limitations that should be addressed. First, signifi-
cant variations were observed in the properties achieved
amongst the 10 donors. Age does not appear to be the pre-
vailing indicator, and so other predictors of growth potential
must be developed to identify suitable donors, such as
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Fig. 5. Histological analysis of constructs from best-case (Donor 8, A,C,E) and worst-case (Donor 6, B,D,F) samples on day 70. DAPI-staining

of cell nuclei demonstrate infiltration into the outer two-thirds of constructs under best-case conditions (A), and limited infiltration at the periph-

ery under worst-case conditions (B). Similar findings are observed for collagen (C,D) and proteoglycan (E,F) deposition as indicated by PSR
and AB staining, respectively. Scale bar: 1 mm.

short-term screening in pellet cultures prior to scaffold seed-
ing. Furthermore, while some constructs approached mod-
uli of 40 MPa within 10 weeks, further enhancement of
this and other mechanical properties toward native tissue
values is a priority. Another potential limiting factor is the
persistence of the polymer fibers, which may impede com-
plete cellular infiltration. While the volume fraction of poly-
mer in these scaffolds is in the range of 10—20%°", small
pores may slow matrix filling. Inclusion of faster degrading
polymer elements, such as poly(lactic-co-glycolic acid)
(PLGA)®®, or biologic fiber components such as collagen®,
into the fibrous network may speed this infiltration process.
Alternatively, infiltration may be enhanced by creating a mix-
ture of fiber sizes®, utilizing salt leaching approaches to
create large pores/lamellae”, or as in our recent approach,
evacuating sacrificial fibers to enhance porosity while main-
taining overall structural anisotropy”".

As a final note, we created constructs as rectangular
strips to facilitate tensile testing, without considering the
wedge-shaped anatomic form of the meniscus. For clinical

application, engineering and fabrication technologies must
be developed to enable reproduction of the anatomic
form, and integration with native tissue must be achieved”?.
To this end, we have recently demonstrated that MDC-
seeded multi-lamellar constructs form mechanically viable
interfaces when held in apposition with one another”® and
with the native tissue’®, and that the constructs hold
suture”® allowing fixation within a meniscus defect. Regard-
less of these advances, complete integration will be a signif-
icant challenge”®, and strategies that engage the outer
vascular periphery’” maybe be required to enable in vivo
success. Long-term in vivo studies will address this ques-
tion in detail, and explore the ability of these novel con-
structs to preserve articular cartilage and avert the onset
of OA after partial meniscectomy.
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